
Landau damping in a plasma.

Gerhard Berge

September 24, 1969

Abstract

This article gives a short review of the phenomenon Landau damping.1

The theoretical foundation is shortly discussed. Nonlinear Landau damp-
ing is discussed from a phenomenological point of view. Reversibility and
collision free damping is discussed in connection to the echo phenomenon.

1 Introduction

The first studies on plasma oscillations were done by Tonks and Langmuir
1925 [2]. Thy used modified MHD-equations together with Poisson’s equa-
tion, in order to describe these plasma oscillations, also called Langmuir
oscillations, especially in Russian literature. Vlasov in 1938 studied the
same phenomenon using kinetic equations and a self consistent electric
field. Also calle Vlasov’s equation.

2 Vlasov theory

Vlasov equation reads

∂F

∂t
+ v · ∇F − qE

m
· ∇vF = 0 . (1)

Here F = F (r,v, t) is the one particle distribution function, where r is
the position vector, v is the velocity vector and t the time. E is the self
consistent electric field determined by the Poisson’s equation

∇ · E = 4πq · [n −
∫

d3
vF (r,v, t)] . (2)

Furthermore m is the electron mass, q the electron charge and n the ion
density, which is regarded being constant for the high frequency plasma
oscillations.

1This work refers to a lecture given for the Dr. philos degree (PHD) at The University of
Bergen October 24, 1969. On this occasion two lectures were required, one with a topic you
chose yourself, and another with a topic given to you by the committee that were appointed
for judging the work, a topic for this lecture should be complimentary to the work familiar
to the candidate. The given topic in my case was: ”Landau damping in a plasma”. The
following account is a retyping of the note prepared for this lesson, which was written in the
Norwegian language at the time. It is here translated into the English language.
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As usual we introduce the electric potential by

E = −∇φ . (3)

We shall assume an equilibrium solution which is uniformly valid with
F = f ′

0 and φ = φ0 = 0. We assume small oscillations around this
equilibrium and describe them with F = f ′

0 +f ′ and φ. We shall omit the
nonlinear term

q∇φ

m
· ∇vf ′ (4)

in Eq(1) and obtain

∂f ′

∂t
+ v · ∇f ′ +

q

m
∇φ · ∇vf ′

0 = 0 , (5)

∇2φ = 4πq

∫

d3f ′(v, r, t) . (6)

We shall consider plane waves as exp i(k · r− ωt). Then from Eq. (5)
and (6) we find

iωf ′ + iv · kf ′ +
q

m
iφk · ∇vf ′

0 = 0 , (7)

−k2φ = 4πq

∫

d3f ′(v, r, t) . (8)

We now decompose v into parallel and perpendicular components v =
v‖ + v⊥ where v‖ = k

k
· v k

k
. By integrating over v⊥ in velocity space and

introducing

∫ +∞

−∞

d2
v⊥f ′(v, r, t) = f(v‖, r, t) and

∫ +∞

−∞

d2
v⊥f ′

0 = f0 . (9)

we obtain from Eqs.(8) and (9)

−(ω − kv)f = − qk

m
φ

∂f0

∂v
. (10)

Where we have now put v‖ = v since this now can not be misinterpreted
and f ′ = f . Furthermore

−k2φ = 4πq

∫ +∞

−∞

fdv , (11)

or by combining Egs.(10) and (11)

−(ω − kv)f =
4πq2

mk

∂f0

∂v

∫ +∞

−∞

fdv . (12)

By deviding by ω − kv and introducing the plasma frequency ω2
p =

4πe2n
m

we obtain

ε(k,ω) ≡ 1 +
ω2

p

nk

∫ +∞

−∞

∂f0
∂v

dv

ω − kv
= 0 . (13)
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This is the Vlasov dispersion equation for plasma oscillations. It is easily
seen that the integral in this relation does not exist in the usual meaning,
because of the singularity. Vlasov’s prescription was to take the Cauchy
principle value. However this was not well founded physically (see also
section 5). Several attempts were made to resolve this difficulty, but no
one succeeded until Landau resolved the matter in 1946[1].

3 Landau theory

Landaus starting point was to reformulate the problem and solve it as an
initial value problem. We shall summarize Landau’s solution.

∂f

∂t
+ ikvf − i

qk

m
φ

∂f0

∂v
= 0 . (14)

We take the Laplace transform of this equation by multiplying by exp−pt
and integrate with respect to t from −∞ to +∞ obtaining

pfp+ikvfp+i
qk

m
φp

∂f0

∂v
= g(v)eikx with φp = −4πq

k2

∫ +∞

−∞

dvfp . (15)

Here the index p, refers to the Laplace transform and the expression for
φp originates from Eq.(8) and g(v)eikx = f(r,v, t = 0). Furthermore we
have kx = k · r, which means that our choice of coordinate system is such
that k is parallel to the x-axis.

From Eqs.(15) we find

fp = −i
qk

m
φp

∂f0
∂v

p + ikv
+

g(v)eikx

p + ikv
. (16)

By substituting for fp from Eq.(16) in Egs.(15) we get

φp = i
4πq2

m
φp

∫ +∞

−∞

∂f0
∂v

p + ikv
dv − 4πqeikx

k2

∫ +∞

−∞

g(v)

p + ikv
dv (17)

or

φp = −4πiqeikx

k2

G(k.ip)

ε(k, ip)
where G(ip, k) =

∫ +∞

−∞

g(v)dv

ip − kv
, (18)

and ε(k, ip) is given in Eq.(13). We then find

φ(x, t) =
1

2πi

∫ σ+i∞

σ−i∞

φpeptdp = −2qeikx

k2

∫ σ+i∞

σ−i∞

eptdp

ε(k, ip)
G(k.ip) . (19)

By introducing new variable ω = ip, Eq.(19) can be rewritten as

φ(x, t) =
2iqeikx

k2

∫ ∞+iσ

−∞+iσ

e−iωt

ε(k, ω)
G(k, ω)dω . (20)

Here σ must be chosen acording to usual convention, to the right of all
singularities. For the electric field we find
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E(x, t) =
2qeikx

k

∫ ∞+iσ

−∞+iσ

e−iωt

ε(k, ω)
G(k, ω)dω . (21)

Since G(k, ω) is given by initial conditions and ε(k,ω) is given by the
velocity distribution function for equilibrium, we are left with a math-
ematical problem in function theory, namely to evaluate the integral in
Eqs(20) and (21). We notice that apparently we do not get a dispersion
equation like what we got in th Vlasov problem, see Eq.(13).

However, if we take the limit t → ∞, then we can also consider this to
be a dispersion equation. In the case where G(k, ω) is an analytic function
with regard to ω for σ > 0 then the asymtotic form for E(x, t) for large
t will be determined by the zeros in the denominator. Let these be given
by ω = ωk, or

ε(k, ωk) = 0 , (22)

which results in solutions

E(x, t) ∼ exp i(kx − ωkt) , (23)

and we obtain plasma oscillations compared to Eq.(13). But since the
integration over ω takes place along a path in the upper half plane this
has to be taken into consideration when ε(k,ω) is computed using Eq.(13),
this means that

1

ω − kv
=

1

ωr + iωi − kv
,

and when pasing to the limit ωi → 0 we have Plemelj’s formulae

lim
ωi→+0

1

ω − kv
=

P

ω − kv
− iπδ(ω − kv) (24)

where now P means taking the principal value and δ(x) is Dirac’s delta
function. This way to pass around the pole is named Landau’s rule.
Making use of this Eq.(13) can be worked out to give

ε(k, ω) = 1 +
ω2

p

nk
P

∫ ∞

−∞

∂f0
∂v

dv

ω − kv
− iπ

ω2
p

n|k|k
∂f0

∂v









v= ω
k

(25)

where |k| comes from integration over Dirac’s delta function. For ω com-
plex this can also be written as

ε(k,ω) = 1 +
ω2

p

nk

∫ ∞

−∞

∂f0
∂v

dv

ω − kv
, (26)

which has Eg.(25) as the limiting case =ω → 0.
Even if Eq.(21) formally represent the solution to the problem at hand,

it contains, even for isotropic velocity distribution functions, three inte-
grals. (Notice that the definition of f0, Eq.(9), contains a double integral.
These integrals can only be solved analytical for the most trivial cases, like
step functions delta functions and ”resonance functions” ∼ (v2 + a2)−n.
For instance Maxwell distribution functions are not tractable. However,
we still can find considerable information from Eq.(21) in the limiting case
t → ∞.
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We shall now pay some more attention to the case where f0 is given
by a Maxwell distribution

f0 =
n√
πve

e
− v2

v2
e , (27)

where ve is the thermal mean velocity of electrons. Eq.(25) now takes the
form

ε(k,ω) = 1 +
ω2

p

kve

1√
π

∫ ∞

−∞

− 2v

v2
e
e
− v2

v2
e dv

ω − kv
. (28)

By introducing new variables y = v
ve

and η = ω
kve

we find

ε(k, ηkve) = 1+
ω2

p

k2v2
e

2√
π

∫ ∞

−∞

yey2

y − η
dy = 1+2

ω2
p

k2v2
e

{

1+
η√
π

∫ ∞

−∞

ey2

y − η
dy

}

=

1 + 2
ω2

p

k2v2
e

{1 + ηZ(η)} (29)

where we have introduced the plasma dispersion relation [8]

Z(η) =
1√
π

∫ ∞

−∞

ey−2

y − η
dy. (30)

This function is discussed and tabulated by Fried and Conte 1961, it can
also be written as

Z(η) = i
√

πe−η2

{1 + erf(iη)}. (31)

Notice that for complex values of η the integral in Eq.(29) always exists,
and for real values we have to take the limit =η → 0, which means that in
the formula, Eq.(25), we have to substituted for f0, by f0 in Eq.(27). We
shall now study Eq.(29) with ε(k, ηkve) = 0 in the limit η → ∞, k → 0.

For =η ' 0 we find (compare Eq.(25))

Z(η) =
1√
π

P

∫ ∞

−∞

e−y2

y − η
dy + i

√
πe−η2

(32)

where the last contribution comes from the pole in the integrand. By
series expansion of the denominator in the integral with respect to y/η,
we find

Z(η) = −(
1

η
+

1

η2
+ n

1

2η3
+

3

4η5
+

15

8η7
+ · · ·) + i

√
πe−η2

. (33)

This is an asymptotic series with respect to large |η|. We now write
ωp

kve
= η0 and obtain the following result from Eq.(29)

1 + 2η2
0{1 − (1 +

1

2η2
+

3

4η4
+

15

8η7
+ · · ·)}+ 2i

√
πηη2

0e−η2

= 0. (34)

One can then show that the first significant terms in this asymptotic
series for large |η| are
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1 − η2
0

η2
+ 2i

√
πη2

0ηe−η2

= 0. (35)

To lowest order we have that η is real and equal η0. We then write
η = η0 + iηi, solve with respect to ηi, and find

ηi = −
√

πη4
0e−η2

0 . (36)

We continue writing ω = ηkve with

ω = ω0 − iγ (37)

to obtain

ω0 ≈ ±ωp γ ≈
√

π
ω4

p

k3v3
e

e
−

ω2
p

k2v2
e . (38)

Introducing the Debye-length λD by

λD =

√

T

4πη0e2
=

1√
2

ve

ωp

(39)

we find

γ ≈
√

π

8

ωp

λ3
Dk3

e
− 1

λ2
D

k2
. (40)

This is Landau’s result. The condition for this approximation is kλD <<
1.

We notice that in this approximation the damping is exponential small.
From the complete solution for the electric field, Eq.(21), we see that for
reasonable large values of t we get a contribution from the pole, ω − kv,
in the expression for G(ω, k), Eq.(18). This correspond to a spread of
particles with respect to the perturbation from which we started. This of
course implies that the evolution of the electric field is very complicated
as time passes on.

4 Physical interpretation of Landau damp-

ing

Many have tried to explain Landau damping from simple physical mod-
els. see T. Dawsen 1961 [2]Dawsen, Ching-Sheng Wu (1962)[5] and Mont-
gomery & Tideman (1964)[6].

The main focus on all of these models is to concentrate on particles
being in resonance with the ”electrostatic” wave propagating through the
plasma. Looking at Eq.(25) it is clear that in the general case the origin
of the imaginer part of ω is proportional to ∂f0

∂v
for particles moving close

to phase velocity ω/k.
This supports the following interpretation: Those particles moving a

little bit slower than the wave will be accelerated and those moving a
little faster will be retarded. The first group of particles thus will takes
away energy from the wave and the second group gives away energy to
the wave. Therefor if ∂f0

∂v
> 0 there will be a net transfer of energy from

the wave to the particles, in other words a damping.
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We can also view this problem from a different angel. It can be shown
that the distribution function continues to oscillate for all time, however
integrated quantities like the electric field become damped because of
phase mixing from different parts of the distribution function. This topic
is discussed in section 4.

5 Van Kampen waves

Following the historical path, the next essential contribution was given by
Van Kampen 1955[10]. Van Kampen showed that the usual technique of
normal modes used by Vlasov [?] could be extended to give a complete
solution in agreement with Landau’s result.

We give a brief overview by returning to Eq.(10). When we solved
this equation we divided by the factor (ω− kv), which could be zero. It is
therefor clear that to the solution we have found, we can add the solution
to the equation

(ω − kv)f = 0 , (41)

which have the nontrivial solution

f = λ(v)δ(ω − kv) . (42)

Therefore the full solution of Eq.(10) not only contains the discrete spec-
trum of normal modes, but in addition contains a continues spectrum
facilitated by the Dirac delta function solution given in Eq.(42), such that
the complete solution can be written as

f = −4πq2

mk

∂f0
∂v

ω − kv
P

∫ ∞

−∞

fdv + λ(v)δ(ω − kv) , (43)

where P again means we integrate over the singularity (ω − kv) by taking
the Cauchy principal value. Notice we now have included the contribution
from the singularity in the delta function term. Otherwise Eqs. (42)
and (43) tells us that λ(v) is completely arbitrary. But since Eq.(10) is
homogeneous in f , we can normalize such that

∫ ∞

−∞

fdv = 1 .

This way we obtain

λ(
ω

k
) = |k|{1 +

4πq2

mk
P

∫ ∞

−∞

∂f0
∂v

ω − kv
dv} , (44)

comparing now to Eq.(25) we observe that if we take

λ(
ω

k
) = −iπ

ω2
p

n|k|k
∂f0

∂v









v= ω
k

, (45)

this equation becomes identical to Eq.(25). We also notice that the extra
contribution to f in Eq.(43) comes from a tiny region around v = ω/k.
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It is now possible to show that the solutions found this way are com-
plete in the sense that any perturbation can be expanded in this class of
solutions, this was done by Van Kampen [10] and later Case 1959[3] could
show that Landau’s and Van Kampen’s results were identical.

Still Backus[2] has commented on this, and pointed out that Van Kam-
pen’s result relay on the fact that the distribution function f0(v) is stable,
which is not explicitly referred to by Van Kampen. So it is only for this
case the Van Kampen solutions represent a complete set. Backus has also
shown that the Laplace transform technique as used by Landau, always
gives the right answer, because no instability grows faster than exponen-
tially. And therefore the inverse Laplace transform always exists.

We shall now take a look at the physical implications of Van Kampen’s
results. As already mentioned, λ in Eq.(42) is arbitrary, which means that
Eq.(43) is not a dispersion equation like ε(ω, k) = 0, but an equation that
for given ω and k determines λ, thus it follows that for a given k, ω can
be arbitrary. From Eq.(43) we see that λ can be interpreted as a ray of
particles moving with the phase velocity of the wave. So with a carefully
chosen perturbation we can have plasma waves propagating undamped.
Because we can choose λ such that the last term in Eq.(25), the term
giving Landau damping, cancel. Physically this means that we from the
starting point add to the perturbation a stream of particles moving with
the phase velocity of the wave and designed so that there is no net energy
transfer from particles to the wave.

This is the so called Van Kampen waves, which can be interpreted as
a stream of particles moving with the phase velocity ω/k.

The reason these waves were absent in Eq.(25) was that we required
certain regularity conditions on the distribution function at t = 0, namely
that it should be a whole function, see Jackson 1960[11].

6 Critical remarks

By such a short, summarizing and superficial account as we have given
here one can easily end up believing that these problems basically are
understood and solved. But that is not true, there still are many aspects
of this topic that are not understood or resolved. The first question is:
How well will a linear theory describe such phenomenon? The second
question: When will nonlinear effects become important? See Eq.(4). We
shall now pay some attention to these issues in the following account.

A third question: Hayes[12] has pointed out that in addition to the
zero-points for ε(k, ηkve) = 0 as localized in Eqs.(29) and (30), it must
exist infinitely many zero-points due to Picard’s theorem. It is still an
unresolved problem localizing these zero-points. The positioning of these
zero-points could strongly affect the time it takes before one enters the
asymptotically damped regime.

Finally there exist tricky problem of a priori assuming the distribution
function to be an analytic function at time t = 0. Also it is not easily
understood how such unphysical technicalities as the behavior of the dis-
tribution function for complex arguments should influence the behavior
of the electric field, for instance.
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On the other side there is a close correspondence in between the be-
havior of a function for real arguments and complex arguments. These
problems have been thoroughly examined in several works by H. Weitzner,
1963[13], 1964[14] and 1965[15]. The same author[16] also study ion waves
in a collision-less plasma, where both electron and ion-oscillations are con-
sidered. We will now pay attention to some experimental results regarding
this topic.

7 Experiments with Landau damping

It took nearly 20 years, from Landau’s work[1] in 1946 before the first
experiments with believable results were done to test this theory. These
were done by Malmberg et. al. in 1964[17] and 1966[25]. Even though
some work was done, Wong at.al., 1964[19], where observations of wave-
phenomenon in the ionosphere was indicating the existence of Landau
damping of ion acoustic waves, we agree with Kadomtsev 1968[20], when
he says that we have to look at the experiment by Malmberg et.al. as the
first direct experimental evidence for the existence of Landau damping as
phenomena.

In the firs experiment it is shown without doubt how damping is de-
pendent on particles in the distribution function that move with the phase
velocity of the wave. This setup was in the framework of a boundary value
problem and the observed phenomenon was Landau damping i space.

Later experiments by Malmberg and Wharton, 1966 and 1967, have
confirmed these results in detail, and we can conclude that the dispersion
equation

ε(k,ω) = 0

has been verified.

8 Nonlinear Landau damping

It is very interesting to investigate this problem for wave amplitudes large
enough that nonlinear effects become important. To some extent one
may say that the linear problem basically is solved by Landau at least in
the limit t → ∞. Corresponding statements can not be made about the
nonlinear case, that is the problem we have when keeping the term given
by Eq.(4), a term omitted in Vlasov’s eguation, Eq.(5).

Still a great deal of work has been done studying finite amplitude
waves looking for collision-less damping. One technique used is the so
called quasi-linear approach where one make an expansion with respect to
Wave modus and look at coupling in between different modes and treat
the mode-coupling terms as small, using straight forward perturbation
techniques. The pioneering work on this topic was done by Drummond
and Pines, 1962[21]. O’Neil 1965[22] also uses this technique in the study
of collision-less nonlinear damping of plasma oscillations.

It will be to farfetched to go into details of the Vlasov nonlinear prob-
lem here. Instead we will make brief comments on the problem as seen
from a phonological point of view. This is because it provides some insight
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into the physics behind such processes. We will mostly follow an overview
article by Kadomtsev 1968[20].

We study an ”electrostatic” wave having the potential φ = φ0 cos(ω0t−
kx). Furthermore the amplitude φ0 is considered to be small and the phase

velocity vf = ωo/k >>
√

2T/m (that is the thermal speed), this means
there is a relatively small number of electrons having a speed around the
phase velocity vf , in other words we are on the tail of the distribution
function. We can therefore look at φ being nearly constant for the time
interval considered, because so few particles are interacting with the wave.
Thus we are studying the behavior of particles in resonance with the wave
having nearly constant amplitude. If we move to a frame of reference fol-
lowing the wave, the electrons will experience a potential φ = φ0 cos(kx).
The electrons can be conveniently divided in two groups. This is the
electrons being trapped in the potential which oscillates in between two
maxima, and the second group is the electrons having sufficient energy,
(are sufficiently different in speed compared to v = vf ) to pass the po-
tential hilltops, i.e. the transient electrons.

From the Newton’s law we have

−eE = e
∂φ

∂x
= mẍ , −e is electron charge (46)

or
d2x

dt2
+

φ0ke

m
sin(kx) . (47)

For small amplitude oscillations we have approximately harmonic oscilla-
tions with frequency

Ω = k

√

eφ0

m
(48)

Studying Eq.(47) in phase-plane x, y = dx
dt

we find

Figure 1:

Here we have that φ has a max at x = 0, ±2π, · · ·. Notice that the
potential energy for electrons is −eφ, which has its minimum at the same
place as φ. The separatrix in Fig.1 separate the trapped and transient
particles.
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The frequency decreases when we move from the center (x = 0, v = 0)
outwards. Particles being located in v = 0, x = ±(2n + 1)π, n =
1, 2, 3 · · · have the speed zero and no acceleration because the force is zero
at this point. Therefore these particles are at rest. From a continuity
point of view we see that particles close to the separatrix have a small
mean velocity whether they are trapped or transient. The total energy
for a particle

m(v − vf )2

2
− eφ = constant. (49)

Since (v − vf )|x=±π = 0 and φ(±π) = 0, we have

1

2
m(v − vf)2 = eφ and

2e

m
φ0(v − vf)2max . (50)

The half-width of the separatrix at x = 0 now is

∆v =

√

2eφ0

m
. (51)

This shows that the ∆v decreases with amplitude, but slower than linear.
Further it shows that the number of trapped particles can be relatively
large even for a small wave amplitude.

Now we try to follow the time-evolution of the distribution function
F . Since the interaction-region 2∆v is relatively broad we will omit the
perturbation in the distribution function, since this is a higher order effect.
Formally we can write

r = {x, v} and u =
dr

dt
= {dx

dt
,
dy

dt
} or u = {v,

e

m

∂φ

∂x
} , (52)

and we can write the Vlasov equation as

∂F

∂t
+ u · ∇F = 0 , ∇ ≡ ∂

∂r
, ∇ · u = 0 . (53)

Thus we can regard Eq.(53) as the equation of continuity for a substance
F streaming in the phase-plan (x, v), and since ∇ · u = 0, this flow is
incompressible and F is conserved along a stream line. From this we can
make up a picture of the variation in F , when we know the flow-pattern
and F , at the starting point.

In Fig. 2 we shadowed the region corresponding to trapped particles,
those being inside the separatrix, and therefore are in resonance with the
wave. Being in resonance these particles oscillate with a frequency close
to Ω in the potential of the wave and will therfore start to rotate in the
phase-plane. This is shown in the left part of Fig.2 (after Kadomtsev[20]).
In Fig.2 a) we have the start situation, in Fig.2 b) the picture after one
half period and in c) after several periods. We therefore have that the
particles to the left of vf in Fig.2 change place after one period. If there
are equally many particles to the left and right of vf there will be no
change, but if ∂F

∂v
|v=vf

6= 0 , this is not the case. After half a period we
have the situation shown in Fig.2 b), and if the problem was linear we
would be exactly back to the starting position. But Ω is not the same for
different particle groups as we move away from the cener of the phase-
plane. This will result in a mixing of particles, a phase mixing, such
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Figure 2:

that after some time there will be equally many particles on each side of
vf . The net effect being that this process will produce a plateau in the
distribution function. See Fig.3

Figure 3:

The wave we obtain after this process is finished corresponds to the
stationary solution of Vlasov’s equation. This is because at this point the
singular point (ω−kv) = 0 in Eq.(13) do not make any contribution since
∂f0
∂v

|ω=kv = 0 , and it becomes meaningful integrating Eq.(13) and taking
the principal value of the integral. The stationary case can therefore be
realized physically as the evolution of a wave with finite amplitude.

We can also look at this problem from the angel of Van Kampen modes.
If we from the starting point add a ”ray” of particles such that the distri-
bution function from the start have a plataue at v = ω

k
, then undamped

oscillations can exist. In this situation phase mixing will not have any
other effect than preserving the already existing plataue.

Another intersting aspect with these equations are that they are re-
versible. The question then is: How can a reversible process be consistent
with damping? And can these processes be examined experimentally? We
will touch these issues in the next section.
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9 Landau damping and irreversible pro-

cesses, echo phenomenon

It is easy to show that Vlasov’s equation together with Poisson’s equa-
tion govern reversible processes. But how do you interpret damping in a
reversible system? Reversible in the strict sense means that the system
conserves the memory of its initial state for all time. And if we at any
time enters the system and reverse the velocity for all the particles, the
system would evolve towards the initial state at t = 0. Such a process can
of course never be realized in practical terms. It is therefore very difficult
to test whether an actual system is reversible. Still this can be done, and
it is within existing experimental techniques possible to observe effects
that can measure reversibility of a system. We are now talking about the
so called echo phenomenon. We will give a short summary of results in
this respect, essentially following work by Gould et.al.[23] 1967.

Echo phenomenon have been known for a long time in connection with
resonance effects in nuclear physics Hahn 1950[24]. But echo phenomenon
in plasma physics is a more recent field of research. From the Landau’s
theory we have learned that macroscopic quantities like the electric field
and charge density can be damped exponentially whereas the distribution
function in phase space continues to oscillate for ever. In this connection
one may think of this effect as an integrated effect in phase space be-
cause as time passes on these oscillations becomes faster and faster. The
distribution function takes the form

f2(v, x, t) = f1(v)e−ik1x+ik1t . (54)

Therefore as time passes on the interval in velocity space ∆v = 2π
k1t

, cor-
responding to one period in the oscillations becomes smaller and smaller.
This is the cause for integrated quantities like the electric field and charge
density to become damped. This is also the reason for this effect to be
called phase mixing.

Echo phenomenon in plasma are related to well known echo phe-
nomenon and have its origin in reversing a damping process which is
due to phase mixing, by interacting with the system and reversing the
phase-evolution on the microscopic level.

First we give a simple physical explanation. Let us think that we at
time t = 0 interact with the system to perturb it with an electric field
∼ e−ik1x, then this field becomes damped and leave behind a distribution
function like the one given by Eq.(54). We then interact with the system
at time t = τ with the perturbation ∼ eik2x. This will leave a first order
perturbation in the system of the following form

f2(v) = eik2x−ik2v(t−τ) . (55)

In addition to this the first order perturbation that already existed will
be modulated with a second order term

f(v)f2(v) = ei(k1−k2)x+i{k2τ+(k1−k2)t}v . (56)

We see that at a certain time t = k2
k1−k2

τ the coefficient of v in the
exponent becomes zero. The integral over the distribution function will
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not be zero due to phase mixing at this point. If τ is large compared to
the characteristic time for collision-less damping and k2

(k1−k2)
∼ 1, then

this third electric field will show up long after the first wave is being
damped to a very low level by phase mixing. This means we have an echo.
Such echo phenomenon naturally are interesting by itself because they
could give some measure of the collision frequency in the plasma. This
is because collisions will wipe out the information otherwise being stored
in the collision-less plasma and thus reveal to what extent collisions play
a role for the actual plasma-medium. Therefore it is of great interest to
study systems where collisions were not neglected and find what influence
they have on the echo effect.

The echo phenomenon can be studied rigorously based on Vlasov’s and
Poisson’s equations. In the following we study a one dimensional system,
and assume perturbations at t = 0 and t = τ by two pulses in the electric
potential

φext = Φk1 cos(k1x)δ(ωpt) + Φk2 cos(k2x) δ{ωp(t − τ)} , (57)

where we have put in the plasma frequency, ωp, in the argument for the
delta-function in order to make it dimension-less.

We now apply Fourier transform in space and Laplace transform in
time of the Vlasov - Poisson system of equations. We find equations to
first and second order when expanding with respect to amplitude in the
imposed pulses. The theory otherwise is the usual quasi linear theory, see
Drummond and Pines 1962[7].

f̃
(1)
k (p) =

e

m
ikφ̃

(1)
k (p)

∂f0
∂v

p + ikv
(58)

f̃
(2)
k (p) =

e

m
ikφ̃

(2)
k (p)

∂f0
∂v

p + ikv
+

e

m

′

∑

q

∫ σ+i∞

σ−i∞

φp′

2πi
i(k−q)φ̃

(1)
k−q(p−p′)

∂f̃
(1)
q (p′)

∂v

p + ik
dp′ ,

(59)
(Notice that the prime on the summation sign means that we do not count
q = 0).

k2φ̃
(1)
k (p) = 4πne

∫ ∞

−∞

dvf̃
(1)
k (v, p)+

k2
1Φk1

2ωp

{δk,k1+δk,−k1}+
k2
2Φk2

2ωp

{δk,k2+δk,−k2}e−pτ

(60)

k2φ̃
(2)
k (p) = 4πne

∫ ∞

−∞

dvf̃
(1)
k (v, p) . (61)

For a given quantity q, q̃ means the Laplace transformed of q and the
index k refers to the Fourier transform. We then obtain

k2φ̃
(2)
k = ω2

pφ̃
(2)
k (p)

∫ ∞

−∞

ik
∂f0
∂v

p + ikv
dv+

∫ ∞

−∞

dv

{

e

m

∑

q

∫ σ′+∞

σ′−i∞

2dp′

4πi
i(k−q)φ̃

(1)
k−q(p−p′)

∂f̃
(1)
q (p′)

∂v

p + ikv

}

.

(62)
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From Eqs.(58) and (60) we find

φ̃
(1)
k (p) =

4πne

k2

∫

e

m
φ̃

(1)
k (p)

∂f0
∂v

v + p

i(k−q)

dv+
k2
1Φk1

2k2ωp

{δk,k1+δk,−k1}+
k2
2Φk2

2k2ωp

{δk,k2 +δk,−k2}

(63)
from which we obtain

φ̃
(1)
k (p) =

1

ε(k, ip)

[

k2
1

k2

Φk1

2ωp

{

δk,k1 + δk,−k1

}

+
k2
2Φk2

k22ωp

{δk,k2 + δk,−k2}e−pτ

]

(64)
where ε(k, ip) is given by Eq.(13). Integrating by parts we find

φ̃2
k(p) =

ω2
p

ikε(k, ip)

e

m

∫ ∞

−∞

dv

′

∑

q

∫ σ′+∞

σ′−∞

dp′

2πi
i(k−q)φ̃

(1)
k−q(p−p′)

f̃
(1)
q (p′)

(p + ik)2
.

(65)
By substituting from Eq.(58) in Eq(65) we obtain

φ̃2
k(p) =

ω2
p

ikε(k, ip)

e

m

∫ ∞

−∞

dv

′

∑

q

∫ σ′+∞

σ′−∞

dp′

2πi
i(k−q)φ̃

(1)
k−q(p−p′)

e

m
iqφ̃(1)

q (p′)
∂f0
∂v

(p′ + iqv)(p + ik)2
.

(66)
Fore k3 = k2 − k1 , q1 = −k1 and q2 = k2 we find that

′

∑

q

(k − q)q

p′ + iqv
φ̃

(1)
k−q(p−p′) φ̃

′

q(p
′) = −k1k2

[

φ̃
(1)
k2

(p − p′) φ̃
(1)
−k1

(p′)

p′ − ik1v
+

φ̃
(1)
−k1

(p− p′) φ̃
(1)
k2

(p′)

p′ + ik2v

]

.

(67)
From Eqs.(66), (67) we now find

φ̃
(2)
k3

=
1

2πi

∫ σ+∞

σ−∞

ept φ̃k3 (p)dp =

1

2πi

∫ σ+∞

σ−∞

dp
ω2

pe/m

ik3 ε(k3, ip)

∫ ∞

−∞

dv

∫ σ′+∞

σ′−∞

dp′

2πi
(−k1k2)

∂f0
∂v

(p + ik3v)2
Φk1Φk2

4ω2
p

·A ,

(68)
where

A ≡
[

ept e−p′τ

ε(k2, ip′) ε
(

− k1, i(p − p′)
)

(p′ + ik2v)
+

ep(t−τ) ep′τ

ε(−k1, ip′) ε
(

k2, i(p − p′)
)

(p′ − ik1v)

]

or

φ
(2)
k3

=
e

m

Φk1Φk2ik1k2k3

4k2
3

∫ ∞

−∞

dv

∫ σ+i∞

σ−i∞

dp

2πi

∫ σ
′

+i∞

σ
′
−i∞

dp′

2πi

A ∂f0
∂v

ε(k3, ip)(p + ik3)2
.

(69)
When integrating over p and p′ we can always choose 0 < σ′ < σ . In
order to evaluate the integrals we use the usual residue-calculus. We will
omit the contributions from the three dielectric functions ε(k, ip). This is
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motivated by the fact that we are interested in the solutions where values
of τ fulfill the requirements |γ(k1τ |, |γ(k2τ |, |γ(k3τ | >> 1, where γ(k)
is the Landau damping constant at time t = 2τ .

This means that the time passed from the last pulse to an eventually
echo is of the order τ , which means that the electric fields connected to
each of these pulses are damped and disappeared.

We only get contributions from the residues associated with the three
poles p = ik1v, p = −ik2v and p = ik3v. First we integrate over p′ by
closing the contour such that the integrand approach zero on a half circle
centered in (σ′, 0).

Looking at the first term in A, we do the integration by closing the
contour in the right half-plane and for the last term in the left half-plane.
Since all the singularities are located on the imaginary axis, having σ > 0
there will be no singularities from poles inside the contour in the right
half-plane. From integration in the left half-plan we obtain

∫ σ′+∞

σ′−∞

dp′

2πi
A =

ep(t−τ) eik1vτ

ε(−k1,−k1v) ε(k2, ip + k1v)
. (70)

One can easily achieve integration over p by doing a series expansion of
ep(t−τ) around p = −ik3, in order to obtain the residue at this point (
we have to use the that t > τ in order to get any contribution), and we
obtain the final result

φ̃
(2)
k3

≈ e

m

Φk1 Φk2 k1k2 ik3(t − τ)

4k2
3

∫ ∞

−∞

dv
∂f0
∂v

e−ik3(t−τ)v+ik1vτ

ε(k3, k3v) ε(−k1,−k1v) ε(k2, k2v)

(71)
We now observe that for k3(t − τ) ≈ k1τ or at t ≈ τ′ ≡ k1+k3

k3
τ = k2

k3
τ ,

there is no phase-mixing and φ̃
(2)
k3

gets a finite value or an echo at this
point in time.

We have given a brief account of echo phenomenon in time, but one
can also study this phenomenon in space. If exploring a boundary-value
problem with damping in space, it can be shown to exist corresponding
echo in space. This means that at a specific position in space we obtain
an echo in space.

This has been tested experimentally by Malmberg[25] et.al. 1968. At
this time one think of echo-phenomenon in plasma to be experimentally
verified. The results regarding these kind of phenomenon have to a great
extent broaden our understanding of Landau − damping.
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